###
Using Theoretical and Experimental Probability to Make Predictions

Given an event to simulate, the student will use theoretical probabilities and experimental results to make predictions and decisions.

###
Using Multiplication by a Constant Factor

Given problems involving proportional relationships, the student will use multiplication by a constant factor to solve the problems.

###
Generating Different Representations of Relationships

Given problems that include data, the student will generate different representations, such as a table, graph, equation, or verbal description.

###
Predicting, Finding, and Justifying Data from a Table

Given data in table form, the student will use the data table to interpret solutions to problems.

###
Predicting, Finding, and Justifying Data from a Graph

Given data in the form of a graph, the student will use the graph to interpret solutions to problems.

###
Determining Slopes from Equations, Graphs, and Tables

Given algebraic, tabular, and graphical representations of linear functions, the student will determine the slope of the relationship from each of the representations.

###
Predicting, Finding, and Justifying Data from Verbal Descriptions

Given data in a verbal description, the student will use equations and tables to solve and interpret solutions to problems.

###
Approximating the Value of Irrational Numbers

Given problem situations that include pictorial representations of irrational numbers, the student will find the approximate value of the irrational numbers.

###
Expressing Numbers in Scientific Notation

Given problem situations, the student will express numbers in scientific notation.

###
Converting Between Measurement Systems

Given a real-world situation with measurements in either metric/SI or customary units, the student will solve a problem requiring them to convert from one system to the other.

###
Determining if a Relationship is a Functional Relationship

The student is expected to gather and record data & use data sets to determine functional relationships between quantities.

###
Graphing Dilations, Reflections, and Translations

Given a coordinate plane, the student will graph dilations, reflections, and translations, and use those graphs to solve problems.

###
Graphing and Applying Coordinate Dilations

Given a coordinate plane or coordinate representations of a dilation, the student will graph dilations and use those graphs to solve problems.

###
Developing the Concept of Slope

Given multiple representations of linear functions, the student will develop the concept of slope as a rate of change.

###
Recognizing Misuses of Graphical or Numerical Information

Given a problem situation, the student will analyze data presented in graphical or tabular form by evaluating the predictions and conclusions based on the information given.

###
Evaluating Methods of Sampling from a Set of Data

Given a problem situation, the student will evaluate a method of sampling to determine the validity of an inference made from the set of data.

###
Writing Geometric Relationships

Given information in a geometric context, students will be able to use informal arguments to establish facts about the angle sum and exterior angle of triangles, the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.

###
Solutions of Simultaneous Equations

Given a graph of two simultaneous equations, students will be able to interpret the intersection of the graphs as the solution to the two equations.

###
Comparing and Explaining Transformations

Given rotations, reflections, translations, and dilations, students will be able to develop algebraic representations for rotations, and generalize and then compare and contrast the properties of congruence transformations and non-congruence transformations.

###
Mean Absolute Deviation

Given a set of data with no more than 10 data points, students will be able to determine and use the mean absolute deviation to describe the spread of the data.